dc.creatorHamedani, Kian
dc.creatorLiu, Lingjia
dc.creatorAtat, Rachad
dc.creatorWu, Jinsong
dc.creatorYi, Yang
dc.date.accessioned2018-07-17T16:49:04Z
dc.date.accessioned2019-04-26T01:42:42Z
dc.date.available2018-07-17T16:49:04Z
dc.date.available2019-04-26T01:42:42Z
dc.date.created2018-07-17T16:49:04Z
dc.date.issued2018
dc.identifierIEEE Transactions on Industrial Informatics Volumen: 14 Número: 2 Páginas: 734-743
dc.identifier10.1109/TII.2017.2769106
dc.identifierhttp://repositorio.uchile.cl/handle/2250/149938
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2453956
dc.description.abstractA new method for attack detection of smart grids with wind power generators using reservoir computing (RC) is introduced in this paper. RC is an energy-efficient computing paradigm within the field of neuromorphic computing and the delayed feedback networks (DFNs) implementation of RC has shown superior performance in many classification tasks. The combination of temporal encoding, DFN, and a multilayer perceptron (MLP) as the output read-out layer is shown to yield performance improvement over existing attack detection methods such as MLPs, support vector machines (SVM), and conventional state vector estimation (SVE) in terms of attack detection in smart grids. The proposed algorithms are shown to be more robust than MLP and SVE in dealing with different variables such as the amplitude of the attack, attack types, and the number of compromised measurements in smart grids. The attack detection rate for the proposed RC-based system is higher than 99%, based on the accuracy metric for the average of 10 000 simulations.
dc.languageen
dc.publisherIEEE-INST Electrical Electronics Engineers INC
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceIEEE Transactions on Industrial Informatics
dc.subjectAttack detection
dc.subjectDelayed feedback networks (DFNs)
dc.subjectNeuromorphic computing
dc.subjectReservoir computing (RC)
dc.subjectSmart grids
dc.subjectState vector estimation (SVE)
dc.subjectTemporal encoder
dc.titleReservoir computing meets smart grids: attack detection using delayed feedback networks
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución