dc.creatorFlorig, Michael
dc.creatorRivera Cayupi, Jorge
dc.date.accessioned2018-07-03T14:10:05Z
dc.date.available2018-07-03T14:10:05Z
dc.date.created2018-07-03T14:10:05Z
dc.date.issued2017
dc.identifierJournal of Mathematical Economics, 72 (2017): 145–153
dc.identifierhttp://dx.doi.org/10.1016/j.jmateco.2017.06.004
dc.identifierhttps://repositorio.uchile.cl/handle/2250/149391
dc.description.abstractThis paper investigates an economy where all consumption goods are indivisible at the individual level, but perfectly divisible at the overall level of the economy. In order to facilitate trading of goods, we introduce a perfectly divisible parameter that does not enter into consumer preferences — fiat money. When consumption goods are indivisible, a Walras equilibrium does not necessarily exist. We introduce the rationing equilibrium concept and prove its existence. Unlike the standard Arrow–Debreu model, fiat money can always have a strictly positive price at the rationing equilibrium. In our set up, if the initial endowment of fiat money is dispersed, then a rationing equilibrium is a Walras equilibrium. This result implies the existence of a dividend equilibrium or a Walras equilibrium with slack.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Mathematical Economics
dc.subjectCompetitive equilibrium
dc.subjectIndivisible goods
dc.titleExistence of a competitive equilibrium when all goods are indivisible
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución