dc.creatorMartínez Miranda, L. J.
dc.creatorRomero Hasler, P.
dc.creatorMeneses Franco, A.
dc.creatorSoto Bustamante, Eduardo
dc.date.accessioned2018-06-25T19:45:10Z
dc.date.accessioned2019-04-26T01:39:15Z
dc.date.available2018-06-25T19:45:10Z
dc.date.available2019-04-26T01:39:15Z
dc.date.created2018-06-25T19:45:10Z
dc.date.issued2017
dc.identifierLiquid Crystals, 44:10, 1549-1558
dc.identifier10.1080/02678292.2017.1302008
dc.identifierhttp://repositorio.uchile.cl/handle/2250/149188
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2453237
dc.description.abstractWe explore the possibility of producing polymer nanocomposites with an ordered distribution of nanoparticles by using an electropolymerizable liquid crystal (LC) monomer. The nanoparticles are added to the monomer before polymerizing it. We study the polymer derived from the LC (E)-6-(3-hydroxy-4-(((4-octyloxy)phenyl)imino)methyl)phenoxy)hexyl methacrylate (M6R8) both pure and in the presence of 3.4nm TiO2 nanoparticles, at 30wt%. This particular system is chosen since (1) the LC polymers we work with have the added advantage of having a specific orientation and structure which allows us to study its effect in the nanoparticles and (2) when considering the nanocomposite, it is polymerized with the nanoparticles included. The system is studied using grazing incidence small angle X-ray scattering and in-plane direction X-ray scattering. The polymer obtained alone appears to be tilted with respect to the surface of the substrate. The structure adopted by the nanoparticles in the nanocomposite is layered and apparently incommensurate with the polymer. It is formed through the association of the nanoparticles with the M6R8 aromatic cores during the process of electropolymerisation. This interpretation of the data is supported by the nanoparticle structures formed when the related, non-polymerizable LC, (E)-6-(3-hydroxy-4-(((4-octyloxy)phenyl)imino)methyl)phenoxy)hexyl isobutyrate (I6R8), is analysed. We find that for both, the pure polymer poly-((E)-6-(3-hydroxy-4-(((4-octyloxy)phenyl)imino)methyl)phenoxy)hexyl) methacrylate (EPM6R8) as well as the polymer with nanoparticles (EPM6R830TO), the electropolymerisation imposes a preferred growth direction of the polymer side chains, and therefore for the nanoparticle arrangement in the polymer.
dc.languageen
dc.publisherTaylor & Francis
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceLiquid Crystals
dc.subjectNanoparticles
dc.subjectMethacrylic LC monomers
dc.subjectElectropolymerisation
dc.subjectGrazing incidence X-ray scattering
dc.subjectIncommensurate structures
dc.titleIncommensurate structures investigated by X-ray studies of electropolymerised methacrylic monomer with TiO2 nanoparticles
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución