dc.creatorMartínez Aguilera, Servet
dc.date.accessioned2018-06-21T15:33:34Z
dc.date.accessioned2019-04-26T01:38:57Z
dc.date.available2018-06-21T15:33:34Z
dc.date.available2019-04-26T01:38:57Z
dc.date.created2018-06-21T15:33:34Z
dc.date.issued2017
dc.identifierAdvances in Applied Mathematics 91 (2017): 115–136
dc.identifierhttp://dx.doi.org/10.1016/j.aam.2017.06.004
dc.identifierhttp://repositorio.uchile.cl/handle/2250/149118
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2453169
dc.description.abstractWe study the discrete-time evolution of a recombination transformation in population genetics. The transformation acts on a product probability space, and its evolution can be described by a Markov chain on a set of partitions that converges to the finest partition. We describe the geometric decay rate to this limit and the quasi-stationary behavior of the Markov chain when conditioned on the event that the chain does not hit the limit.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceAdvances in Applied Mathematics
dc.subjectPopulation genetics
dc.subjectRecombination
dc.subjectPartitions
dc.subjectMarkov chain
dc.subjectGeometric decay rate
dc.subjectQuasi stationary distributions
dc.titleA probabilistic analysis of a discrete-time evolution in recombination
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución