| dc.creator | Martínez Aguilera, Servet | |
| dc.date.accessioned | 2018-06-21T15:33:34Z | |
| dc.date.accessioned | 2019-04-26T01:38:57Z | |
| dc.date.available | 2018-06-21T15:33:34Z | |
| dc.date.available | 2019-04-26T01:38:57Z | |
| dc.date.created | 2018-06-21T15:33:34Z | |
| dc.date.issued | 2017 | |
| dc.identifier | Advances in Applied Mathematics 91 (2017): 115–136 | |
| dc.identifier | http://dx.doi.org/10.1016/j.aam.2017.06.004 | |
| dc.identifier | http://repositorio.uchile.cl/handle/2250/149118 | |
| dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/2453169 | |
| dc.description.abstract | We study the discrete-time evolution of a recombination transformation in population genetics. The transformation acts on a product probability space, and its evolution can be described by a Markov chain on a set of partitions that converges to the finest partition. We describe the geometric decay rate to this limit and the quasi-stationary behavior of the Markov chain when conditioned on the event that the chain does not hit the limit. | |
| dc.language | en | |
| dc.publisher | Elsevier | |
| dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
| dc.source | Advances in Applied Mathematics | |
| dc.subject | Population genetics | |
| dc.subject | Recombination | |
| dc.subject | Partitions | |
| dc.subject | Markov chain | |
| dc.subject | Geometric decay rate | |
| dc.subject | Quasi stationary distributions | |
| dc.title | A probabilistic analysis of a discrete-time evolution in recombination | |
| dc.type | Artículos de revistas | |