dc.creatorPanasenko, Grigory
dc.date.accessioned2018-05-29T19:48:15Z
dc.date.available2018-05-29T19:48:15Z
dc.date.created2018-05-29T19:48:15Z
dc.date.issued2017
dc.identifierApplicable Analysis, 2017 Vol. 96, No. 16, 2771–2779
dc.identifier10.1080/00036811.2016.1240366
dc.identifierhttps://repositorio.uchile.cl/handle/2250/148309
dc.description.abstractMethod of asymptotic partial decomposition of a domain (MAPDD) proposed and justified earlier for thin domains (rod structures, tube structures) is generalized and justified for the multistructures, i.e. domains consisting of a set of thin cylinders connecting some massive 3D domains. In the present paper, the Dirichlet boundary value problem for the steady-state Stokes equations is considered. This problem is reduced to the Stokes equations in the massive domains coupled with the Poiseuille-type flows within the thin cylinders at some distance from the bases (the MAPDD approximation problem). The high-order estimates for the difference of the exact solution to the initial problem and the solution to the MAPDD approximation problem is proved.
dc.languageen
dc.publisherTaylor & Francis
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceApplicable Analysis
dc.subjectStokes equations
dc.subjectMultistructures
dc.subjectAsymptotic partial decomposition
dc.subjectEstimates
dc.subjectHybrid dimension models
dc.titleMethod of asymptotic partial decomposition of domain for multistructures
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución