dc.creatorGallegos, Javier A.
dc.creatorDuarte Mermoud, Manuel
dc.date.accessioned2018-05-22T14:58:32Z
dc.date.available2018-05-22T14:58:32Z
dc.date.created2018-05-22T14:58:32Z
dc.date.issued2017
dc.identifierISA Transactions 69 (2017): 31–42
dc.identifier10.1016/j.isatra.2017.04.021
dc.identifierhttps://repositorio.uchile.cl/handle/2250/147991
dc.description.abstractConditions for boundedness and convergence of the output error and the parameter error for various Caputo's fractional order adaptive schemes based on the steepest descent method are derived in this paper. To this aim, the concept of sufficiently exciting signals is introduced, characterized and related to the concept of persistently exciting signals used in the integer order case. An application is designed in adaptive indirect control of integer order systems using fractional equations to adjust parameters. This application is illustrated for a pole placement adaptive problem. Advantages of using fractional adjustment in control adaptive schemes are experimentally obtained. (C) 2017 ISA. Published by Elsevier Ltd. All rights reserved.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceISA Transactions
dc.subjectAdaptive systems
dc.subjectFractional systems
dc.subjectGradient method
dc.titleConvergence of fractional adaptive systems using gradient approach
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución