dc.creatorMantoiu, Marius
dc.date.accessioned2018-05-17T22:20:00Z
dc.date.available2018-05-17T22:20:00Z
dc.date.created2018-05-17T22:20:00Z
dc.date.issued2017
dc.identifierOurnal of Operator Theory Vol. 77 (2): 481-501
dc.identifier10.7900/jot.2016may02.2110
dc.identifierhttps://repositorio.uchile.cl/handle/2250/147908
dc.description.abstractWe study the essential spectrum and Fredholm properties of certain integral and pseudo-differential operators associated to non-commutative locally compact groups G. The techniques involve crossed product C*-algebras. We extend previous results on the structure of the essential spectrum to self-adjoint operators belonging (or affiliated) to the Schrodinger representation of certain crossed products. When the group G is unimodular and type I, we cover a new class of global pseudo-differential differential operators with operator-valued symbols involving the unitary dual of G. We use recent results of Nistor, Prudhon and Roch on the role of families of representations in spectral theory and the notion of quasi-regular dynamical system.
dc.languageen
dc.publisherTheta Foundation
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceOurnal of Operator Theory
dc.subjectLocally compact group
dc.subjectPseudo differential operator
dc.subjectC*algebra
dc.subjectDynamical system
dc.subjectEssential spectrum
dc.subjectFredholm operator
dc.titleEssential spectrum and fredholm properties for perators on locally compact groups
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución