dc.creatorSilva, J. D.
dc.creatorAmaya Arriagada, Jorge
dc.creatorBasso, F.
dc.date.accessioned2018-05-10T16:52:05Z
dc.date.accessioned2019-04-26T01:31:54Z
dc.date.available2018-05-10T16:52:05Z
dc.date.available2019-04-26T01:31:54Z
dc.date.created2018-05-10T16:52:05Z
dc.date.issued2017
dc.identifierJournal of the Southern African institute of mining and metallurgy Vol. 117 (11): 1089-1094
dc.identifier10.17159/2411-9717/2017/v117n11a14
dc.identifierhttp://repositorio.uchile.cl/handle/2250/147634
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2451691
dc.description.abstractThis article presents predictive statistical models for fragmentation in open pit mines using drill-and-blast data. The main contribution of this work is the proposing of statistical models to determine the correlations between operational data and fragmentation. The practical use of these models allows the drill-and-blast parameters, i.e. burden, spacing, explosive, among others, to be optimized in order to obtain a more efficient size distribution.
dc.languageen
dc.publisherSouthern African institute mining metallurgy
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of the Southern African institute of mining and metallurgy
dc.subjectOpen pit blasting
dc.subjectLinear models
dc.subjectBlast fragmentation
dc.titleDevelopment of a predictive model of fragmentation using drilling and blasting data in open pit mining
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución