Artículo de revista
Uniform Euler approximation of solutions of fractional-order delayed cellular neural network on bounded intervals
Fecha
2017-01Registro en:
Tbilisi Mathematical Journal 10(1) (2017), pp. 171–196.
10.1515/tmj-2017-0012
Autor
Tyagi, Swati
Abbas, Syed
Pinto Jiménez, Manuel
Sepúlveda, Daniel
Institución
Resumen
In this paper, we study convergence characteristics of a class of continuous time fractional-order cellular neural network containing delay. Using the method of Lyapunov and Mittag-Leffler functions, we derive sufficient condition for global Mittag-Leffler stability, which further implies global asymptotic stability of the system equilibrium. Based on the theory of fractional calculus and the generalized Gronwall inequality, we approximate the solution of the corresponding neural network model using discretization method by piecewise constant argument, and obtain some easily verifiable conditions, which ensures that, the discrete-time analogues preserve the convergence dynamics of the continuous-time networks. In the end, we give appropriate examples to validate the proposed results, illustrating advantages of the discrete-time analogue, over continuous-time neural network for numerical simulation.