dc.creatorCalderón Muñoz, Williams
dc.creatorJara Bravo, Cristian
dc.date.accessioned2017-12-21T14:01:46Z
dc.date.available2017-12-21T14:01:46Z
dc.date.created2017-12-21T14:01:46Z
dc.date.issued2016
dc.identifierActa Mech 227, 3247–3260 (2016)
dc.identifier0001-5970
dc.identifier10.1007/s00707-015-1538-5
dc.identifierhttps://repositorio.uchile.cl/handle/2250/146249
dc.description.abstractThis article presents a one-dimensional two-temperature hydrodynamic model to study the thermal and electrical behavior of a gallium arsenide (GaAs) PN junction solar cell. This model treats both electron and heat transfer on equal footing and includes Gauss's law, continuity and momentum equations for electrons and holes, and energy balance using temperature for both carriers and lattice. A zero-order system of equations is obtained using asymptotic series expansions based on the electron Reynolds number for steady-state conditions. An iterative scheme is implemented to solve the zero-order system. The results show the influence of carriers and lattice temperatures in the electrical performance of a GaAs PN junction solar cell. Higher values of power output are obtained with low lattice temperature and hot energy carriers. This modeling contributes to improve the thermal control in photovoltaic technologies
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceActa Mechanica
dc.subjectSemiconductors
dc.subjectTemperature
dc.subjectEfficiency
dc.subjectEquations
dc.subjectTransport
dc.subjectElectron
dc.titleHydrodynamic modeling of hot-carrier effects in a PN junction solar cell
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución