dc.creatorDellacherie, Claude
dc.creatorMartínez Aguilera, Servet
dc.creatorSan Martín Aristegui, Jaime
dc.date.accessioned2017-03-30T20:05:58Z
dc.date.available2017-03-30T20:05:58Z
dc.date.created2017-03-30T20:05:58Z
dc.date.issued2016
dc.identifierAdvances in Applied Mathematics 81(2016)13–39
dc.identifier10.1016/j.aam.2016.04.007
dc.identifierhttps://repositorio.uchile.cl/handle/2250/143409
dc.description.abstractIn this article we characterize the closed cones respectively generated by the symmetric inverse M-matrices and by the inverses of symmetric row diagonally dominant M-matrices. We show the latter has a finite number of extremal rays, while the former has infinitely many extremal rays. As a consequence we prove that every potential is the sum of ultrametric matrices
dc.languageen
dc.publisherAcademic Press-Elsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceAdvances in Applied Mathematics
dc.subjectM-matrix
dc.subjectPotential matrix
dc.subjectUltrametric matrices
dc.subjectWang algebra
dc.subjectMatrix-tree theorem
dc.titleAdditive representation of symmetric inverse M-matrices and potentials
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución