dc.creatorCorrea Fontecilla, Rafael
dc.creatorHantoute, Abderrahim
dc.creatorLópez, M. A.
dc.date.accessioned2016-12-21T19:02:16Z
dc.date.available2016-12-21T19:02:16Z
dc.date.created2016-12-21T19:02:16Z
dc.date.issued2016
dc.identifierJournal of Functional Analysis 271 (2016) 1177–1212
dc.identifier10.1016/j.jfa.2016.05.012
dc.identifierhttps://repositorio.uchile.cl/handle/2250/142029
dc.description.abstractIn this paper we establish new rules for the calculus of the subdifferential mapping of the sum of two convex functions. Our results are established under conditions which are at an intermediate level of generality among those leading to the Hiriart-Urruty and Phelps formula (Hiriart-Urruty and Phelps, 1993 [15]), involving the approximate subdifferential, and the stronger assumption used in the well-known Moreau-Rockafellar formula (Rockafellar 1970, [23]; Moreau 1966, [20]), which only uses the exact subdifferential. We give an application to derive asymptotic optimality conditions for convex optimization.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Functional Analysis
dc.subjectConvex functions
dc.subjectFenchel subdifferential
dc.subjectSubdifferential calculus rules
dc.subjectConvex infinite-dimensional
dc.titleWeaker conditions for subdifferential calculus of convex functions
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución