dc.creatorAdly, Samir
dc.creatorLe, Ba Khiet
dc.date.accessioned2016-10-07T14:13:54Z
dc.date.accessioned2019-04-26T00:59:32Z
dc.date.available2016-10-07T14:13:54Z
dc.date.available2019-04-26T00:59:32Z
dc.date.created2016-10-07T14:13:54Z
dc.date.issued2016
dc.identifierJ Optim Theory Appl (2016) 169:407–423
dc.identifier10.1007/s10957-016-0905-2
dc.identifierhttp://repositorio.uchile.cl/handle/2250/140684
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2444809
dc.description.abstractIn this paper, an existence and uniqueness result of a class of second-order sweeping processes, with velocity in the moving set under perturbation in infinite-dimensional Hilbert spaces, is studied by using an implicit discretization scheme. It is assumed that the moving set depends on the time, the state and is possibly unbounded. The assumptions on the Lipschitz continuity and the compactness of the moving set, and the linear growth boundedness of the perturbation force are weaker than the ones used in previous papers.
dc.languageen
dc.publisherSpringer
dc.sourceJournal of Optimization Theory and Applications
dc.subjectMoreau's sweeping process
dc.subjectQuasi-variational inequalities
dc.subjectDifferential inclusion
dc.titleUnbounded Second-Order State-Dependent Moreau's Sweeping Processes in Hilbert Spaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución