Artículos de revistas
Quantitative Propagation of Chaos for Generalized Kacparticle Systems
Fecha
2016Registro en:
Annals of Applied Probability 2016, Vol. 26, No. 2, 892–916
10.1214/15-AAP1107
Autor
Cortez, Roberto
Fontbona Torres, Joaquín
Institución
Resumen
We study a class of one-dimensional particle systems with true (Bird type) binary interactions, which includes Kac's model of the Boltzmann equation and nonlinear equations for the evolution of wealth distribution arising in kinetic economic models. We obtain explicit rates of convergence for the Wasserstein distance between the law of the particles and their limiting law, which are linear in time and depend in a mild polynomial manner on the number of particles. The proof is based on a novel coupling between the particle system and a suitable system of nonindependent nonlinear processes, as well as on recent sharp estimates for empirical measures.