dc.creatorDellacherie, Claude
dc.creatorMartínez Aguilera, Servet
dc.creatorSan Martín Aristegui, Jaime
dc.date.accessioned2016-09-29T18:40:31Z
dc.date.available2016-09-29T18:40:31Z
dc.date.created2016-09-29T18:40:31Z
dc.date.issued2016
dc.identifierLinear Algebra and its Applications 501 (2016) 123–161
dc.identifier10.1016/j.laa.2016.03.025
dc.identifierhttps://repositorio.uchile.cl/handle/2250/140575
dc.description.abstractIn this article we characterize inverse M-matrices and potentials whose inverses are supported on trees. In the symmetric case we show they are a Hadamard product of tree ultrametric matrices, generalizing a result by Gantmacher and Krein [12] done for inverse tridiagonal matrices. We also provide an algorithm that recognizes when a positive matrix W has an inverse M-matrix supported on a tree. This algorithm has quadratic complexity. We also provide a formula to compute W-1, which can be implemented with a linear complexity. Finally, we also study some stability properties for Hadamard products and powers.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceLinear Algebra and its Applications
dc.subjectM-matrix
dc.subjectPotential matrix
dc.subjectTree matrices
dc.subjectRandom walk on trees
dc.titlePotentials of random walks on trees
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución