dc.creatorBarceló Baeza, Pablo
dc.creatorLibkin, Leonid
dc.date.accessioned2016-09-28T19:57:26Z
dc.date.available2016-09-28T19:57:26Z
dc.date.created2016-09-28T19:57:26Z
dc.date.issued2016
dc.identifierLogical Methods in Computer Science Vol. 12(1:9)2016, pp. 1–17
dc.identifier10.2168/MCS-12(1:6)2016
dc.identifierhttps://repositorio.uchile.cl/handle/2250/140550
dc.description.abstractOur goal is to show that the standard model-theoretic concept of types can be applied in the study of order-invariant properties, i.e., properties definable in a logic in the presence of an auxiliary order relation, hut not actually dependent on that order relation. This is somewhat surprising since order-invariant properties are more of a. combinatorial rather than a logical object. We provide two applications of this notion. One is a proof, from the basic principles, of a, theorem by Courcelle stating that over trees, order-invariant NISO properties are expressible in IMO
dc.languageen
dc.publisherTech Univ Braunschweig
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceLogical Methods in Computer Science
dc.subjectFinite model theory
dc.subjectInvariance
dc.subjectTypes
dc.titleOrder-Invariant Types and their Applications
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución