dc.creatorCorrea Fontecilla, Rafael
dc.creatorHantoute, Abderrahim
dc.creatorJourani, A.
dc.date.accessioned2016-07-06T14:02:37Z
dc.date.available2016-07-06T14:02:37Z
dc.date.created2016-07-06T14:02:37Z
dc.date.issued2016
dc.identifierTransactions of the American Mathematical Society Volumen: 368 Número: 7 Páginas: 4831-4854 jul 2016
dc.identifierDOI: 10.1090/tran/6589
dc.identifierhttps://repositorio.uchile.cl/handle/2250/139431
dc.description.abstractWe establish subdifferential calculus rules for the sum of convex functions defined on normed spaces. This is achieved by means of a condition relying on the continuity behaviour of the inf-convolution of their corresponding conjugates, with respect to any given topology intermediate between the norm and the weak* topologies on the dual space. Such a condition turns out to also be necessary in Banach spaces. These results extend both the classical formulas by Hiriart-Urruty and Phelps and by Thibault.
dc.languageen
dc.publisherAmer Mathematical Soc
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectConvex functions
dc.subjectApproximate subdifferential
dc.subjectCalculus rules
dc.subjectApproximate variational principle
dc.titleCharacterizations of convex approximate subdifferential calculus in banach spaces
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución