dc.creatorAuffarth, Robert
dc.date.accessioned2016-06-29T22:07:26Z
dc.date.accessioned2019-04-26T00:53:00Z
dc.date.available2016-06-29T22:07:26Z
dc.date.available2019-04-26T00:53:00Z
dc.date.created2016-06-29T22:07:26Z
dc.date.issued2016
dc.identifierMath. Z. (2016) 282: 731–746
dc.identifier0025-5874
dc.identifierDOI: 10.1007/s00209-015-1562-0
dc.identifierhttp://repositorio.uchile.cl/handle/2250/139292
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2443430
dc.description.abstractTo every abelian subvariety of a principally polarized abelian variety (A,L) we canonically associate a numerical class in the Néron–Severi group of A.We prove that these classes are characterized by their intersection numbers with L; moreover, the cycle class induced by an abelian subvariety in the Chow ring of A modulo algebraic equivalence can be described in terms of its numerical divisor class. Over the field of complex numbers, this correspondence gives way to an explicit description of the (coarse) moduli space that parametrizes non-simple principally polarized abelian varieties with a fixed numerical class.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectAbelian variety
dc.subjectAbelian subvariety
dc.subjectNon-simple
dc.subjectNéron–Severi
dc.subjectHumbert surfaces
dc.titleOn a numerical characterization of non-simple principally polarized abelian varieties
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución