dc.creator | Auffarth, Robert | |
dc.date.accessioned | 2016-06-29T22:07:26Z | |
dc.date.accessioned | 2019-04-26T00:53:00Z | |
dc.date.available | 2016-06-29T22:07:26Z | |
dc.date.available | 2019-04-26T00:53:00Z | |
dc.date.created | 2016-06-29T22:07:26Z | |
dc.date.issued | 2016 | |
dc.identifier | Math. Z. (2016) 282: 731–746 | |
dc.identifier | 0025-5874 | |
dc.identifier | DOI: 10.1007/s00209-015-1562-0 | |
dc.identifier | http://repositorio.uchile.cl/handle/2250/139292 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/2443430 | |
dc.description.abstract | To every abelian subvariety of a principally polarized abelian variety (A,L) we
canonically associate a numerical class in the Néron–Severi group of A.We prove that these
classes are characterized by their intersection numbers with L; moreover, the cycle class
induced by an abelian subvariety in the Chow ring of A modulo algebraic equivalence can
be described in terms of its numerical divisor class. Over the field of complex numbers,
this correspondence gives way to an explicit description of the (coarse) moduli space that
parametrizes non-simple principally polarized abelian varieties with a fixed numerical class. | |
dc.language | en | |
dc.publisher | Springer | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | |
dc.subject | Abelian variety | |
dc.subject | Abelian subvariety | |
dc.subject | Non-simple | |
dc.subject | Néron–Severi | |
dc.subject | Humbert surfaces | |
dc.title | On a numerical characterization of non-simple principally polarized abelian varieties | |
dc.type | Artículos de revistas | |