dc.creatorBerthon, C.
dc.creatorChalons, C.
dc.creatorCornet, S.
dc.creatorSperone, Gianmarco
dc.date.accessioned2016-06-29T22:01:43Z
dc.date.available2016-06-29T22:01:43Z
dc.date.created2016-06-29T22:01:43Z
dc.date.issued2016
dc.identifierBull Braz Math Soc, New Series 47(1), 117-130 (2016)
dc.identifier1678-7544
dc.identifierDOI: 10.1007/s00574-016-0126-1
dc.identifierhttps://repositorio.uchile.cl/handle/2250/139286
dc.description.abstractThe present work is focused on the numerical approximation of the shallow water equations. When studying this problem, one faces at least two important issues, namely the ability of the scheme to preserve the positiveness of the water depth, along with the ability to capture the stationary states.We propose here aGodunov-typemethod that fully satisfies the previous conditions, meaning that the method is in particular able to preserve the steady states with non-zero velocity.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectShallow-water equations
dc.subjectSteady states
dc.subjectFinite volume schemes
dc.subjectWellbalanced property
dc.subjectPositive preserving scheme
dc.titleFully well-balanced, positive and simple approximate Riemann solver for shallow water equations
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución