dc.creatorHuillet, Thierry
dc.creatorMartínez Aguilera, Servet
dc.date.accessioned2016-06-28T22:26:42Z
dc.date.accessioned2019-04-26T00:52:20Z
dc.date.available2016-06-28T22:26:42Z
dc.date.available2019-04-26T00:52:20Z
dc.date.created2016-06-28T22:26:42Z
dc.date.issued2016
dc.identifierJ Theor Probab (2016) 29:143–179
dc.identifierDOI: 10.1007/s10959-014-0569-5
dc.identifierhttp://repositorio.uchile.cl/handle/2250/139236
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2443282
dc.description.abstractWe study duality relations for zeta and Mobius matrices and monotone conditions on the kernels. We focus on the cases of families of sets and partitions. The conditions for positivity of the dual kernels are stated in terms of the positive Mobius cone of functions, which is described in terms of Sylvester formulae. We study duality under coarse-graining and show that an h-transform is needed to preserve stochasticity. We give conditions in order that zeta and Mobius matrices admit coarse-graining, and we prove they are satisfied for sets and partitions. This is a source of relevant examples in genetics on the haploid and multi-allelic Cannings models.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectDuality
dc.subjectMobius matrices
dc.subjectCoarse-graining
dc.subjectPartitions
dc.subjectSylvester formula
dc.subjectCoalescence
dc.titleOn Mobius Duality and Coarse-Graining
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución