dc.creatorCollet, Pierre
dc.creatorDuarte, Mauricio
dc.creatorMartínez Aguilera, Servet
dc.creatorPrat Waldron, Arturo
dc.creatorSan Martín Aristegui, Jaime
dc.date.accessioned2016-05-26T14:29:57Z
dc.date.accessioned2019-04-26T00:49:24Z
dc.date.available2016-05-26T14:29:57Z
dc.date.available2019-04-26T00:49:24Z
dc.date.created2016-05-26T14:29:57Z
dc.date.issued2016
dc.identifierJournal of Functional Analysis 270 (2016) 1269–1298
dc.identifierDOI: 10.1016/j.jfa.2015.10.021
dc.identifierhttp://repositorio.uchile.cl/handle/2250/138504
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2442652
dc.description.abstractA multicone domain Omega subset of R-n is an open, connected set that resembles a finite collection of cones far away from the origin. We study the rate of decay in time of the heat kernel p(t, x, y) of a Brownian motion killed upon exiting Omega, using both probabilistic and analytical techniques. We find that the decay is polynomial and we characterize lim(t ->infinity)p(t, x, y) in terms of the Martin boundary of Omega at infinity, where alpha > 0 depends on the geometry of Omega. We next derive an analogous result for t(kappa/2)P(x) (T > t), with kappa = 1 +alpha-n/2, where T is the exit time from Omega. Lastly, we deduce the renormalized Yaglom limit for the process conditioned on survival.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectHeat kernel
dc.subjectBrownian motion
dc.subjectYaglom limit
dc.subjectMartin boundary
dc.titleAsymptotics for the heat kernel in multicone domains
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución