dc.creator | Collet, Pierre | |
dc.creator | Duarte, Mauricio | |
dc.creator | Martínez Aguilera, Servet | |
dc.creator | Prat Waldron, Arturo | |
dc.creator | San Martín Aristegui, Jaime | |
dc.date.accessioned | 2016-05-26T14:29:57Z | |
dc.date.accessioned | 2019-04-26T00:49:24Z | |
dc.date.available | 2016-05-26T14:29:57Z | |
dc.date.available | 2019-04-26T00:49:24Z | |
dc.date.created | 2016-05-26T14:29:57Z | |
dc.date.issued | 2016 | |
dc.identifier | Journal of Functional Analysis 270 (2016) 1269–1298 | |
dc.identifier | DOI: 10.1016/j.jfa.2015.10.021 | |
dc.identifier | http://repositorio.uchile.cl/handle/2250/138504 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/2442652 | |
dc.description.abstract | A multicone domain Omega subset of R-n is an open, connected set that resembles a finite collection of cones far away from the origin. We study the rate of decay in time of the heat kernel p(t, x, y) of a Brownian motion killed upon exiting Omega, using both probabilistic and analytical techniques. We find that the decay is polynomial and we characterize lim(t ->infinity)p(t, x, y) in terms of the Martin boundary of Omega at infinity, where alpha > 0 depends on the geometry of Omega. We next derive an analogous result for t(kappa/2)P(x) (T > t), with kappa = 1 +alpha-n/2, where T is the exit time from Omega. Lastly, we deduce the renormalized Yaglom limit for the process conditioned on survival. | |
dc.language | en | |
dc.publisher | Elsevier | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | |
dc.subject | Heat kernel | |
dc.subject | Brownian motion | |
dc.subject | Yaglom limit | |
dc.subject | Martin boundary | |
dc.title | Asymptotics for the heat kernel in multicone domains | |
dc.type | Artículos de revistas | |