dc.creatorFlores, Salvador
dc.date.accessioned2016-05-09T15:17:13Z
dc.date.accessioned2019-04-26T00:48:04Z
dc.date.available2016-05-09T15:17:13Z
dc.date.available2019-04-26T00:48:04Z
dc.date.created2016-05-09T15:17:13Z
dc.date.issued2015
dc.identifierTEST (2015) 24:796–812
dc.identifierDOI: 10.1007/s11749-015-0435-5
dc.identifierhttp://repositorio.uchile.cl/handle/2250/138193
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2442365
dc.description.abstractA quantitative study of the robustness properties of the and the Huber M-estimator on finite samples is presented. The focus is on the linear model involving a fixed design matrix and additive errors restricted to the dependent variables consisting of noise and sparse outliers. We derive sharp error bounds for the estimator in terms of the leverage constants of a design matrix introduced here. A similar analysis is performed for Huber's estimator using an equivalent problem formulation of independent interest. Our analysis considers outliers of arbitrary magnitude, and we recover breakdown point results as particular cases when outliers diverge. The practical implications of the theoretical analysis are discussed on two real datasets.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectl(1) norm minimization
dc.subjectHuber M-estimator
dc.subjectLeverage constants
dc.subjectSparse outliers
dc.subjectBreakdown point
dc.subjectLeverage plot
dc.titleSharp non-asymptotic performance bounds for and Huber robust regression estimators
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución