dc.creatorPantoja, José
dc.creatorSoto Andrade, Jorge
dc.creatorVargas, Jorge A.
dc.date.accessioned2016-05-01T21:30:14Z
dc.date.available2016-05-01T21:30:14Z
dc.date.created2016-05-01T21:30:14Z
dc.date.issued2015
dc.identifierJournal of Lie Theory Volume 25 (2015) 1045-1071
dc.identifierhttps://repositorio.uchile.cl/handle/2250/138109
dc.description.abstractWe construct a finite analogue of classical Siegel's Space. This is made by generalizing Poincare half plane construction for a quadratic field extension E superset of F, considering in this case an involutive ring A, extension of the ring fixed points A(0) = A(Gamma), (Gamma an order two group of automorphisms of A), and the generalized special linear group SL*(2, A), which acts on a *- plane P-A. Classical Lagrangians for finite dimensional spaces over a finite field are related with Lagrangians for PA. We show SL* (2, A) acts transitively on PA when A is a *- euclidean ring, and we study extensibly the case where A = M-n(E). The structure of the orbits of the action of the symplectic group over F on Lagrangians over a finite dimensional space over E are studied.
dc.languageen
dc.publisherHeldermann Verlag
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectFinite Siegel half space
dc.subjectStar-analogue
dc.titleOn the Construction of a Finite Siegel Space
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución