dc.creatorGallegos, Javier A.
dc.creatorDuarte Mermoud, Manuel
dc.date.accessioned2016-01-26T19:45:55Z
dc.date.available2016-01-26T19:45:55Z
dc.date.created2016-01-26T19:45:55Z
dc.date.issued2016
dc.identifierJournal of Computational and Applied Mathematics 296 (2016) 815–826
dc.identifierDOI: 10.1016/j.cam.2015.11.008
dc.identifierhttps://repositorio.uchile.cl/handle/2250/136781
dc.description.abstractWe establish conditions to guarantee boundedness and convergence of signals described by non integer order equations using Caputo derivatives. The case of linear time-varying unforced equations is first studied, and later, results for linear time-varying forced equations and time-varying unforced non linear equations are presented and discussed.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectBoundedness
dc.subjectAsymptotic convergence
dc.subjectFractional order systems
dc.titleBoundedness and convergence on fractional order systems
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución