dc.creatorAlvarez, Alejandro J.
dc.creatorSanz Rodríguez, Carlos E.
dc.creatorCabrera, Juan Luis
dc.date.accessioned2016-01-12T15:18:49Z
dc.date.accessioned2019-04-26T00:40:04Z
dc.date.available2016-01-12T15:18:49Z
dc.date.available2019-04-26T00:40:04Z
dc.date.created2016-01-12T15:18:49Z
dc.date.issued2015
dc.identifierPhilosophical Transactions of the Royal Society A 373: 20150108, 2015
dc.identifierDOI: 10.1098/rsta.2015.0108
dc.identifierhttp://repositorio.uchile.cl/handle/2250/136405
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2440639
dc.description.abstractMany complex systems can be described as networks exhibiting inner organization as communities of nodes. The identification of communities is a key factor to understand community-based functionality. We propose a family of measures based on the weighted sum of two dissimilarity quantifiers that facilitates efficient classification of communities by tuning the quantifiers' relative weight to the network's particularities. Additionally, two new dissimilarities are introduced and incorporated in our analysis. The effectiveness of our approach is tested by examining the Zachary's Karate Club Network and the Caenorhabditis elegans reactions network. The analysis reveals the method's classification power as confirmed by the efficient detection of intrapathway metabolic functions in C. elegans.
dc.languageen
dc.publisherRoyal Soc.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectComplex network
dc.subjectCommunity detection
dc.subjectClassification
dc.subjectSocial network analysis
dc.subjectMetabolic network analysis
dc.subjectData mining
dc.titleWeighting dissimilarities to detect communities in networks
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución