dc.creatorAllahbakhshi, Mahsa
dc.creatorHong, Soonjo
dc.creatorJung, Uijin
dc.date.accessioned2015-12-30T02:39:59Z
dc.date.available2015-12-30T02:39:59Z
dc.date.created2015-12-30T02:39:59Z
dc.date.issued2015
dc.identifierErgod. Th. & Dynam. Sys. (2015), 35, 2353–2370
dc.identifierdoi: 10.1017/etds.2014.39
dc.identifierhttps://repositorio.uchile.cl/handle/2250/136073
dc.description.abstractGiven a factor code pi from a shift of finite type X onto a sofic shift Y, the class degree of pi is defined to be the minimal number of transition classes over the points of Y. In this paper, we investigate the structure of transition classes and present several dynamical properties analogous to the properties of fibers of finite-to-one factor codes. As a corollary, we show that for an irreducible factor triple, there cannot be a transition between two distinct transition classes over a right transitive point, answering a question raised by Quas.
dc.languageen
dc.publisherCambridge University Press
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectEntropy
dc.subjectFactor maps
dc.subjectMarkov measures
dc.subjectTo-one codes
dc.titleStructure of transition classes for factor codes on shifts of finite type
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución