dc.creatorArenas Carmona, Luis
dc.date.accessioned2015-12-17T03:11:15Z
dc.date.available2015-12-17T03:11:15Z
dc.date.created2015-12-17T03:11:15Z
dc.date.issued2015
dc.identifierActa Arithmetica Volumen: 170 Número: 4 (2015)
dc.identifier0065-1036
dc.identifierDOI: 10.4064/aa170-4-5
dc.identifierhttps://repositorio.uchile.cl/handle/2250/135808
dc.description.abstractA commutative order in a quaternion algebra is called selective if it is embeds into some, but not all, the maximal orders in the algebra. It is known that a given quadratic order over a number field can be selective in at most one indefinite quaternion algebra. Here we prove that the order generated by a cubic root of unity is selective for any definite quaternion algebra over the rationals with a type number 3 or larger. The proof extends to a few other closely related orders.
dc.languageen
dc.publisherPolish Acad. Sciences Inst. Mathematics-Impan
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectSelectivity
dc.subjectRepresentations
dc.subjectFields
dc.subjectalgebras
dc.subjectEmbedding theorem
dc.titleRoots of unity in definite quaternion orders
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución