dc.creatorDavis, Sergio
dc.creatorGonzález, Diego
dc.date.accessioned2015-12-16T02:47:49Z
dc.date.available2015-12-16T02:47:49Z
dc.date.created2015-12-16T02:47:49Z
dc.date.issued2015
dc.identifierJournal of Physics A-Mathematical and Theoretical Volumen: 48 Número: 42 oct 2015
dc.identifier1751-8113
dc.identifierDOI: 10.1088/1751-8113/48/42/425003
dc.identifierhttps://repositorio.uchile.cl/handle/2250/135762
dc.description.abstractMaximization of the path information entropy is a clear prescription for constructing models in non-equilibrium statistical mechanics. Here it is shown that, following this prescription under the assumption of arbitrary instantaneous constraints on position and velocity, a Lagrangian emerges which determines the most probable trajectory. Deviations from the probability maximum can be consistently described as slices in time by a Hamiltonian, according to a nonlinear Langevin equation and its associated Fokker-Planck equation. The connections unveiled between the maximization of path entropy and the Langevin/Fokker-Planck equations imply that missing information about the phase space coordinate never decreases in time, a purely information-theoretical version of the Second Law of Thermodynamics. All of these results are independent of any physical assumptions, and thus valid for any generalized coordinate as a function of time, or any other parameter. This reinforces the view that the Second Law is a fundamental property of plausible inference.
dc.languageen
dc.publisherIOP
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.titleHamiltonian formalism and path entropy maximization
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución