dc.creatorCórdova Lepe, Fernando
dc.creatorRobledo Veloso, Gonzalo
dc.creatorCabrera Villegas, Javier
dc.date.accessioned2015-11-29T22:14:57Z
dc.date.available2015-11-29T22:14:57Z
dc.date.created2015-11-29T22:14:57Z
dc.date.issued2015
dc.identifierJournal of Biological Systems Volumen: 23 Páginas: S135-S149 Suplemento: 1 (2015)
dc.identifierDOI: 10.1142/S0218339015400112
dc.identifierhttps://repositorio.uchile.cl/handle/2250/135324
dc.description.abstractThis note gives an overview on basic mathematical models describing the population dynamics of a single species whose vital dynamics has different time scales. We present five cases combining two time-scales with Malthusian growth in at least one scale. The dynamical behavior shows a progressive complexity, from "naive" to chaotic dynamics (in the Li-Yorke's sense). In addition, some open problems and new results are presented.
dc.languageen
dc.publisherWorld Scientific Publ
dc.subjectPopulation Dynamics
dc.subjectBoom and Bust Abundance
dc.subjectImpulsive Differential Equations
dc.subjectStability
dc.titlePopulation growth modeling with boom and bust patterns: the impulsive differential equation formalism
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución