dc.creatorMantoiu, Marius
dc.date.accessioned2015-08-31T19:52:00Z
dc.date.available2015-08-31T19:52:00Z
dc.date.created2015-08-31T19:52:00Z
dc.date.issued2015
dc.identifierBanach Journal of Mathematical Analysis Volumen: 9 Número: 2 Páginas: 289-310, 2015
dc.identifier1735-8787
dc.identifierhttps://repositorio.uchile.cl/handle/2250/133325
dc.description.abstractA discrete group G is called rigidly symmetric if for every C*-algebra A the projective tensor product l(1)(G)(circle times) over capA is a symmetric Banach *-algebra. For such a group we show that the twisted crossed product l(alpha,omega)(1)(G; A) is also a symmetric Banach *-algebra, for every twisted action (alpha,omega omega) of G in a C*-algebra A. We extend this property to other types of decay, replacing the l(1)-condition. We also make the connection with certain classes of twisted kernels, used in a theory of integral operators involving group 2-cocycles. The algebra of these kernels is studied, both in intrinsic and in represented version.
dc.languageen_US
dc.publisherTusi Mathematical Research Group
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectDiscrete group
dc.subjectCrossed product
dc.subjectKernel
dc.subjectSymmetric Banach algebra
dc.subjectWeight
dc.titleSymmetry and Inverse Closedness for Some Banach ∗-Algebras Associated to Discrete Groups
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución