dc.creatorGouet Bañares, Raúl
dc.creatorLópez, F. Javier
dc.creatorSanz, Gerardo
dc.date.accessioned2015-08-23T00:36:05Z
dc.date.available2015-08-23T00:36:05Z
dc.date.created2015-08-23T00:36:05Z
dc.date.issued2015
dc.identifierTEST (2015) 24:302–321
dc.identifier1863-8260
dc.identifierDOI: 10.1007/s11749-014-0408-0
dc.identifierhttps://repositorio.uchile.cl/handle/2250/133049
dc.description.abstractLet be a sequence of independent and identically distributed random variables, with common absolutely continuous distribution . An observation is a near-record if , where and is a parameter. We analyze the point process on of near-record values from , showing that it is a Poisson cluster process. We derive the probability generating functional of and formulas for the expectation, variance and covariance of the counting variables . We also obtain strong convergence and asymptotic normality of , as , under mild tail-regularity conditions on . For heavy-tailed distributions, with square-integrable hazard function, we show that grows to a finite random limit and compute its probability generating function. We apply our results to Pareto and Weibull distributions and include an example of application to real data.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectRecord
dc.subjectNear-record
dc.subjectPoisson cluster process
dc.subjectLaw of large numbers
dc.subjectCentral limit theorem
dc.titleOn the point process of near-record values
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución