dc.creatorBonomo, Flavia
dc.creatorDurán, Guillermo
dc.creatorSafe, Martín D.
dc.creatorWagler, Annegret K.
dc.date.accessioned2015-08-19T02:28:17Z
dc.date.available2015-08-19T02:28:17Z
dc.date.created2015-08-19T02:28:17Z
dc.date.issued2015
dc.identifierDiscrete Applied Mathematics 186 (2015) 19–44
dc.identifierDOI: 10.1016/j.dam.2015.01.012
dc.identifierhttps://repositorio.uchile.cl/handle/2250/132908
dc.description.abstractA graph is clique-perfect if the maximum number of pairwise disjoint maximal cliques equals the minimum number of vertices intersecting all maximal cliques for each induced subgraph. In this work, we give necessary and sufficient conditions for the complement of a line graph to be clique-perfect and an O(n2)-time algorithm to recognize such graphs. These results follow from a characterization and a linear-time recognition algorithm for matching-perfect graphs, which we introduce as graphs where the maximum number of pairwise edge-disjoint maximal matchings equals the minimum number of edges intersecting all maximal matchings for each subgraph. Thereby, we completely describe the linear and circular structure of the graphs containing no bipartite claw, from which we derive a structure theorem for all those graphs containing no bipartite claw that are Class 2 with respect to edge-coloring.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectClique-perfect graphs
dc.subjectEdge-coloring
dc.subjectLine graphs
dc.subjectMatchings
dc.titleClique-perfectness of complements of line graphs
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución