dc.creatorCánovas, M.
dc.creatorHantoute, A.
dc.creatorParra, J.
dc.creatorToledo, F.
dc.date.accessioned2015-08-12T14:54:58Z
dc.date.available2015-08-12T14:54:58Z
dc.date.created2015-08-12T14:54:58Z
dc.date.issued2015
dc.identifierOptim Lett (2015) 9:513–521
dc.identifierDOI: 10.1007/s11590-014-0767-1
dc.identifierhttps://repositorio.uchile.cl/handle/2250/132627
dc.description.abstractThis paper was originally motivated by the problem of providing a point-based formula (only involving the nominal data, and not data in a neighborhood) for estimating the calmness modulus of the optimal set mapping in linear semi-infinite optimization under perturbations of all coefficients. With this aim in mind, the paper establishes as a key tool a basic result on finite-valued convex functions in the -dimensional Euclidean space. Specifically, this result provides an upper limit characterization of the boundary of the subdifferential of such a convex function. When applied to the supremum function associated with our constraint system, this characterization allows us to derive an upper estimate for the aimed calmness modulus in linear semi-infinite optimization under the uniqueness of nominal optimal solution.
dc.languageen_US
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectVariational analysis
dc.subjectCalmness
dc.subjectSemi-infinite programming
dc.subjectLinear programming
dc.titleBoundary of subdifferentials and calmness moduli in linear semi-infinite optimization
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución