dc.creatorMahmoudi, Fethi
dc.creatorSubiabre Sánchez, Felipe
dc.creatorYao, Wei
dc.date.accessioned2015-08-04T19:23:30Z
dc.date.available2015-08-04T19:23:30Z
dc.date.created2015-08-04T19:23:30Z
dc.date.issued2015
dc.identifierJ. Differential Equations 258 (2015) 243–280
dc.identifierDOI: 10.1016/j.jde.2014.09.010
dc.identifierhttps://repositorio.uchile.cl/handle/2250/132361
dc.description.abstractWe study positive solutions of the following semilinear equation epsilon 2 Delta((g) over bar)u - V(z)u + u(p) = o on M, where (M, (g) over bar) is a compact smooth n-dimensional Riemannian manifold without boundary or the Euclidean space R-n, epsilon is a small positive parameter, p > 1 and V is a uniformly positive smooth potential. Given k = 1,...,n - 1, and 1 < p < n+2-k/n-2-k. Assuming that K is a k-dimensional smooth, embedded compact submanifold of M, which is stationary and non-degenerate with respect to the functional integral(K) Vp+1/P-1-n-k/2 dvol, we prove the existence of a sequence epsilon = epsilon(j) -> 0 and positive solutions u(epsilon) that concentrate along K. This result proves in particular the validity of a conjecture by Ambrosetti et al. [1], extending a recent result by Wang et al. [32], where the one co-dimensional case has been considered. Furthermore, our approach explores a connection between solutions of the nonlinear Schredinger equation and f -minimal submanifolds in manifolds with density.
dc.languageen_US
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectNonlinear Schrodinger equation
dc.subjectConcentration phenomena
dc.subjectInfinite dimensional reduction
dc.subjectManifolds with density
dc.titleOn the Ambrosetti–Malchiodi–Ni conjecture for general submanifolds
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución