dc.creatorLagos, Guido
dc.creatorEspinoza González, Daniel
dc.creatorMoreno, Eduardo
dc.creatorVielma, Juan Pablo
dc.date.accessioned2015-08-04T15:20:40Z
dc.date.accessioned2019-04-26T00:21:30Z
dc.date.available2015-08-04T15:20:40Z
dc.date.available2019-04-26T00:21:30Z
dc.date.created2015-08-04T15:20:40Z
dc.date.issued2015
dc.identifierEuropean Journal of Operational Research 241 (2015) 771–782
dc.identifier0377-2217
dc.identifierDOI: 10.1016/j.ejor.2014.09.024
dc.identifierhttp://repositorio.uchile.cl/handle/2250/132328
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2436619
dc.description.abstractIn this paper we consider characterizations of the robust uncertainty sets associated with coherent and distortion risk measures. In this context we show that if we are willing to enforce the coherent or distortion axioms only on random variables that are affine or linear functions of the vector of random parameters, we may consider some new variants of the uncertainty sets determined by the classical characterizations. We also show that in the finite probability case these variants are simple transformations of the classical sets. Finally we present results of computational experiments that suggest that the risk measures associated with these new uncertainty sets can help mitigate estimation errors of the Conditional Value-at-Risk.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectCoherent
dc.subjectAlgorithm
dc.subjectManagement
dc.subjectPortfolio optimization
dc.subjectValue-at-risk
dc.titleRestricted risk measures and robust optimization
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución