dc.creatorBaudouin, Lucie
dc.creatorErvedoza, Sylvain
dc.creatorOsses Alvarado, Axel
dc.date.accessioned2015-08-04T18:09:45Z
dc.date.available2015-08-04T18:09:45Z
dc.date.created2015-08-04T18:09:45Z
dc.date.issued2015
dc.identifierJ. Math. Pures Appl. 103 (2015) 1475–1522
dc.identifier0021-7824
dc.identifierdoi: 10.1016/j.matpur.2014.11.006
dc.identifierhttps://repositorio.uchile.cl/handle/2250/132340
dc.description.abstractUsing uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differ-ences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterparts, include new terms depending on the discretization parameter h. From these stability results, we design a numerical method to compute convergent approximations of the continuous potential.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectDiscrete Carleman estimates
dc.subjectInverse problem
dc.subjectStability estimates
dc.subjectWave equation
dc.titleStability of an inverse problem for the discrete wave equation and convergence results
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución