dc.creatorLi, Shuguang
dc.creatorYuanb, Jianping
dc.creatorShi, Yong
dc.creatorZagal Montealegre, Juan
dc.date.accessioned2015-07-09T18:38:20Z
dc.date.accessioned2019-04-26T00:19:04Z
dc.date.available2015-07-09T18:38:20Z
dc.date.available2019-04-26T00:19:04Z
dc.date.created2015-07-09T18:38:20Z
dc.date.issued2015
dc.identifierPhysica A 428 (2015) 103–110
dc.identifier0378-4371
dc.identifierhttp://repositorio.uchile.cl/handle/2250/131892
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2436089
dc.description.abstractNetwork motifs are local structural patterns and elementary functional units of complex networks in real world, which can have significant impacts on the global behavior of these systems. Many models are able to reproduce complex networks mimicking a series of global features of real systems, however the local features such as motifs in real networks have not been well represented.Wepropose a model to grow scale-free networks with tunable motif distributions through a combined operation of preferential attachment and triad motif seeding steps. Numerical experiments show that the constructed networks have adjustable distributions of the local triad motifs, meanwhile preserving the global features of powerlaw distributions of node degree, short average path lengths of nodes, and highly clustered structures.
dc.languageen_US
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile
dc.subjectNetwork motif
dc.subjectMotif seeding
dc.subjectScale-free network
dc.subjectSmall-world network
dc.subjectHigh clustering
dc.subjectTriad motif
dc.titleGrowing scale-free networks with tunable distributions of triad motifs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución