Artículos de revistas
Annexin 6 modulates the maxi-chloride channel of the apical membrane of syncytiotrophoblast isolated from human placenta
Fecha
2004-11-26Registro en:
JOURNAL OF BIOLOGICAL CHEMISTRY 279 (48): 50601-50608 NOV 26 2004
0021-9258
Autor
Riquelme Pino, Gloria
Llanos Vidal, Paola
Tischner, Erin
Neil, Jessica
Campos, Begoña
Institución
Resumen
The syncytiotrophoblast separates the maternal and fetal blood and constitutes the primary barrier for maternal-fetal transport. The Maxi-chloride channel from the apical membrane of the syncytiotrophoblast plays a role in the chloride conductance. Annexins can play an important role in the regulation of membrane events. In this study we evaluate the role of annexin 6 in the Maxichloride channel properties. The results showed that annexin 6 is bound in the apical placenta membranes in a calcium-dependent phospholipid-binding manner but also in a calcium-independent fashion. The neutralization of annexin 6 decreased the total current by 39 +/- 1.9% in the range of +/- 80 mV, and the currents decrease with the time. The single-channel slope conductance was decreased from 253 +/- 7.4 pS ( control) to 105 +/- 13 pS, and the amplitude decreased by 50%. The open probability was also affected when higher voltage steps were used, changes in either the positive or negative direction induced the channel to close, and the open probability (P-o) did not decrease. In channels with neutralized annexin 6, it was maintained at 1 at +/- 40 mV and at +/- 80 mV. These results suggest that endogenous annexin 6 could regulate the Maxi-chloride channel. The results obtained with normal placentae, in which annexin 6 was neutralized, are similar to those described for the Maxichloride channel isolated from pre-eclamptic placenta. Together these data suggest that annexin 6 could play an important role in ion transport of the placenta.