Chile
| Artículos de revistas
Steady state analysis for a relaxed cross diffusion model
dc.creator | Lepoutre, Thomas | |
dc.creator | Martínez Salazar, Salomé | |
dc.date.accessioned | 2014-12-30T13:22:48Z | |
dc.date.accessioned | 2019-04-25T23:56:13Z | |
dc.date.available | 2014-12-30T13:22:48Z | |
dc.date.available | 2019-04-25T23:56:13Z | |
dc.date.created | 2014-12-30T13:22:48Z | |
dc.date.issued | 2014 | |
dc.identifier | Discrete and Continuous Dynamical Systems February 2014, 34 (2): p. 613-633 | |
dc.identifier | doi:10.3934/dcds.2014.34.613 | |
dc.identifier | http://repositorio.uchile.cl/handle/2250/126842 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/2431166 | |
dc.description.abstract | In this article we study the existence the existence of nonconstant steady state solutions for the following relaxed cross-diffusion system [fórmula] with a bounded smooth domain, n the outer unit normal to @ , > 0 denote the relaxation parameter. The functions a(v), b(u) account for nonlinear crossdiffusion, being a(v) = 1 + v-y , b~u) = 1 + u-ñ with y, n > 1 a model example. We give conditions for the stability of constant steady state solutions and we prove that under suitable conditions Turing patterns arise considering as a bifurcation parameter. | |
dc.language | en | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.subject | Cross di usion models | |
dc.title | Steady state analysis for a relaxed cross diffusion model | |
dc.type | Artículos de revistas |