Chile | Artículos de revistas
dc.creatorLepoutre, Thomas
dc.creatorMartínez Salazar, Salomé
dc.date.accessioned2014-12-30T13:22:48Z
dc.date.accessioned2019-04-25T23:56:13Z
dc.date.available2014-12-30T13:22:48Z
dc.date.available2019-04-25T23:56:13Z
dc.date.created2014-12-30T13:22:48Z
dc.date.issued2014
dc.identifierDiscrete and Continuous Dynamical Systems February 2014, 34 (2): p. 613-633
dc.identifierdoi:10.3934/dcds.2014.34.613
dc.identifierhttp://repositorio.uchile.cl/handle/2250/126842
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2431166
dc.description.abstractIn this article we study the existence the existence of nonconstant steady state solutions for the following relaxed cross-diffusion system [fórmula] with a bounded smooth domain, n the outer unit normal to @ , > 0 denote the relaxation parameter. The functions a(v), b(u) account for nonlinear crossdiffusion, being a(v) = 1 + v-y , b~u) = 1 + u-ñ with y, n > 1 a model example. We give conditions for the stability of constant steady state solutions and we prove that under suitable conditions Turing patterns arise considering as a bifurcation parameter.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectCross di usion models
dc.titleSteady state analysis for a relaxed cross diffusion model
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución