dc.creatorRíos Pérez, Sebastián
dc.creatorMuñoz Magnino, Ricardo
dc.date.accessioned2014-12-18T17:40:44Z
dc.date.available2014-12-18T17:40:44Z
dc.date.created2014-12-18T17:40:44Z
dc.date.issued2014
dc.identifierScientific World Journal Volume 2014, Article ID 105428, 11 pages
dc.identifierDOI: 10.1155/2014/105428
dc.identifierhttps://repositorio.uchile.cl/handle/2250/126686
dc.description.abstractUnderstanding the underlying community structure is an important challenge in social network analysis. Most state-of-the-art algorithms only consider structural properties to detect disjoint subcommunities and do not include the fact that people can belong to more than one community and also ignore the information contained in posts that users have made. To tackle this problem, we developed a novel methodology to detect overlapping subcommunities in online social networks and a method to analyze the content patterns for each subcommunities using topic models. This paper presents our main contribution, a hybrid algorithm which combines two different overlapping sub-community detection approaches: the first one considers the graph structure of the network (topology-based subcommunities detection approach) and the second one takes the textual information of the network nodes into consideration (topic-based subcommunities detection approach). Additionally we provide a method to analyze and compare the content generated. Tests on real-world virtual communities show that our algorithm outperforms other methods.
dc.languageen
dc.publisherHindawi
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.titleContent Patterns in Topic-Based Overlapping Communities
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución