dc.creatorDávila Bonczos, Juan
dc.creatorDupaigne, Louis
dc.creatorWang, Kelei
dc.creatorWei, Juncheng
dc.date.accessioned2014-12-11T14:11:12Z
dc.date.available2014-12-11T14:11:12Z
dc.date.created2014-12-11T14:11:12Z
dc.date.issued2014
dc.identifierAdvances in Mathematics 258 (2014) 240–285
dc.identifierDOI:/10.1016/j.aim.2014.02.034
dc.identifierhttps://repositorio.uchile.cl/handle/2250/126512
dc.description.abstractWe consider Liouville-type and partial regularity results for then online arfourth-order problem Δ2u = |u|p−1u in Rn, where p>1 and n≥ 1.We give a complete classification of stableand finite Morse index solutions (whether positive o rsign changing),in the full exponent range.We also compute an upper bound. of the Hausdorff dimension of the singular set of extremal solutions.Our approachis motivated by Fleming’ stangent cone analysis technique for minimal surfaces and Federer’s dimension reduction principle in partial regularity theory.A key tool is the monotonicity formula for biharmonic equations.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectMonotonicityformula
dc.titleA monotonicity formula and a Liouville-typetheorem for a fourth order super critical problem
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución