dc.creator | Dellacherie Lefebvre, Claude | |
dc.creator | San Martín Aristegui, Jaime | |
dc.creator | Martínez Aguilera, Servet | |
dc.date.accessioned | 2014-01-28T15:32:53Z | |
dc.date.accessioned | 2019-04-25T23:53:48Z | |
dc.date.available | 2014-01-28T15:32:53Z | |
dc.date.available | 2019-04-25T23:53:48Z | |
dc.date.created | 2014-01-28T15:32:53Z | |
dc.date.issued | 2013 | |
dc.identifier | SIAM J. MATRIX ANAL. APPL. Vol. 34, No. 2, pp. 831–854 | |
dc.identifier | DOI. 10.1137/120900411 | |
dc.identifier | http://repositorio.uchile.cl/handle/2250/126312 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/2430638 | |
dc.description.abstract | Given W = M−1, with M a tridiagonal M-matrix, we show that there are two diagonal
matrices D,E and two nonsingular ultrametric matrices U, V such that DWE is the Hadamard
product of U and V . If M is symmetric and row diagonally dominant, we can take D = E = I. We
relate this problem with potentials associated to random walks and study more closely the class of
random walks that lose mass at one or two extremes. | |
dc.language | en | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.subject | M-matrix | |
dc.title | THE CLASS OF INVERSE M-MATRICES ASSOCIATED TO RANDOM WALKS | |
dc.type | Artículos de revistas | |