dc.creatorDellacherie Lefebvre, Claude
dc.creatorSan Martín Aristegui, Jaime
dc.creatorMartínez Aguilera, Servet
dc.date.accessioned2014-01-28T15:32:53Z
dc.date.accessioned2019-04-25T23:53:48Z
dc.date.available2014-01-28T15:32:53Z
dc.date.available2019-04-25T23:53:48Z
dc.date.created2014-01-28T15:32:53Z
dc.date.issued2013
dc.identifierSIAM J. MATRIX ANAL. APPL. Vol. 34, No. 2, pp. 831–854
dc.identifierDOI. 10.1137/120900411
dc.identifierhttp://repositorio.uchile.cl/handle/2250/126312
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2430638
dc.description.abstractGiven W = M−1, with M a tridiagonal M-matrix, we show that there are two diagonal matrices D,E and two nonsingular ultrametric matrices U, V such that DWE is the Hadamard product of U and V . If M is symmetric and row diagonally dominant, we can take D = E = I. We relate this problem with potentials associated to random walks and study more closely the class of random walks that lose mass at one or two extremes.
dc.languageen
dc.publisherSociety for Industrial and Applied Mathematics
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectM-matrix
dc.titleTHE CLASS OF INVERSE M-MATRICES ASSOCIATED TO RANDOM WALKS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución