dc.creatorLópez, Julio
dc.creatorLópez, Rubén
dc.creatorRamírez Cabrera, Héctor
dc.date.accessioned2014-01-09T15:02:45Z
dc.date.available2014-01-09T15:02:45Z
dc.date.created2014-01-09T15:02:45Z
dc.date.issued2013
dc.identifierJ Optim Theory Appl (2013) 159:741–768
dc.identifierDOI 10.1007/s10957-012-0116-4
dc.identifierhttps://repositorio.uchile.cl/handle/2250/126113
dc.description.abstractThis paper is devoted to the study of the symmetric cone linear complementarity problem (SCLCP). Specifically, our aim is to characterize the class of linear transformations for which the SCLCP has always a nonempty and bounded solution set in terms of larger classes. For this, we introduce a couple of new classes of linear transformations in this SCLCP context. Then, we study them for concrete particular instances (such as second-order and semidefinite linear complementarity problems) and for specific examples (Lyapunov, Stein functions, among others). This naturally permits to establish coercive and noncoercive existence results for SCLCPs.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectEuclidean Jordan algebra
dc.titleLinear Complementarity Problems over Symmetric Cones: Characterization of Qb-transformations and Existence Results
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución