dc.creatorSan Martín, Jorge
dc.creatorScheid, Jean-François
dc.creatorSmaranda, Loredana
dc.date.accessioned2014-01-09T13:45:50Z
dc.date.available2014-01-09T13:45:50Z
dc.date.created2014-01-09T13:45:50Z
dc.date.issued2012
dc.identifierNumer. Math. (2012) 122:341–382
dc.identifierDOI 10.1007/s00211-012-0460-1
dc.identifierhttps://repositorio.uchile.cl/handle/2250/126100
dc.description.abstractIn this paper, we propose a new characteristics method for the discretization of the two dimensional fluid-rigid body problem in the case where the densities of the fluid and the solid are different. The method is based on a global weak formulation involving only terms defined on the whole fluid-rigid domain. To take into account the material derivative, we construct a special characteristic function which maps the approximate rigid body at the (k +1)-th discrete time level into the approximate rigid body at k-th time. Convergence results are proved for both semi-discrete and fully-discrete schemes.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.titleA modified Lagrange-Galerkin method for a fluid-rigid system with discontinuous density
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución