dc.creatorMoreno Araya, Eduardo
dc.date.accessioned2014-01-07T19:41:49Z
dc.date.available2014-01-07T19:41:49Z
dc.date.created2014-01-07T19:41:49Z
dc.date.issued2005
dc.identifierInformation Processing Letters 96 (2005) 214–219
dc.identifierdoi:10.1016/j.ipl.2005.05.028
dc.identifierhttps://repositorio.uchile.cl/handle/2250/126018
dc.description.abstractA de Bruijn sequence over a finite alphabet of span n is a cyclic string such that all words of length n appear exactly once as factors of this sequence. We extend this definition to a subset of words of length n, characterizing for which subsets exists a de Bruijn sequence.We also study some symbolic dynamical properties of these subsets extending the definition to a language defined by forbidden factors. For these kinds of languages we present an algorithm to produce a de Bruijn sequence. In this work we use graph-theoretic and combinatorial concepts to prove these results.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectDe Bruijn sequences
dc.titleDe Bruijn sequences and De Bruijn graphs for a general language
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución