dc.creatorHantoute, A.
dc.creatorMartínez Legaz, J. E.
dc.date.accessioned2014-01-07T19:22:45Z
dc.date.available2014-01-07T19:22:45Z
dc.date.created2014-01-07T19:22:45Z
dc.date.issued2013
dc.identifierJ Optim Theory Appl (2013) 159:673–680
dc.identifierDOI 10.1007/s10957-013-0291-y
dc.identifierhttps://repositorio.uchile.cl/handle/2250/126014
dc.description.abstractWe give a necessary and sufficient condition for a difference of convex (DC, for short) functions, defined on a normed space, to be Lipschitz continuous. Our criterion relies on the intersection of the ε-subdifferentials of the involved functions.
dc.languageen
dc.publisherSpringer
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectDC functions
dc.titleCharacterization of Lipschitz Continuous Difference of Convex Functions
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución