dc.creator | Hantoute, A. | |
dc.creator | Martínez Legaz, J. E. | |
dc.date.accessioned | 2014-01-07T19:22:45Z | |
dc.date.available | 2014-01-07T19:22:45Z | |
dc.date.created | 2014-01-07T19:22:45Z | |
dc.date.issued | 2013 | |
dc.identifier | J Optim Theory Appl (2013) 159:673–680 | |
dc.identifier | DOI 10.1007/s10957-013-0291-y | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/126014 | |
dc.description.abstract | We give a necessary and sufficient condition for a difference of convex
(DC, for short) functions, defined on a normed space, to be Lipschitz continuous. Our
criterion relies on the intersection of the ε-subdifferentials of the involved functions. | |
dc.language | en | |
dc.publisher | Springer | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.subject | DC functions | |
dc.title | Characterization of Lipschitz Continuous Difference of Convex Functions | |
dc.type | Artículo de revista | |