dc.creatorConca Rosende, Carlos
dc.creatorDurán, Mario
dc.creatorRappaz, Jacques
dc.date.accessioned2013-12-30T18:37:59Z
dc.date.available2013-12-30T18:37:59Z
dc.date.created2013-12-30T18:37:59Z
dc.date.issued1998
dc.identifierNumer. Math. (1998) 79: 349–369
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125911
dc.description.abstractThe aim of this work is to derive rate of convergence estimates for the spectral approximation of a mathematical model which describes the vibrations of a solid-fluid type structure. First, we summarize the main theoretical results and the discretization of this variational eigenvalue problem. Then, we state some well known abstract theorems on spectral approximation and apply them to our specific problem, which allow us to obtain the desired spectral convergence. By using classical regularity results, we are able to establish estimates for the rate of convergence of the approximated eigenvalues and for the gap between generalized eigenspaces.
dc.languageen_US
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectRate of convergence
dc.titleRate of convergence estimates for the spectral approximation of a generalized eigenvalue problem
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución