dc.creatorConca Rosende, Carlos
dc.creatorSchwindt, Erica L.
dc.creatorTakahashi, Takéo
dc.date.accessioned2013-12-30T15:07:33Z
dc.date.available2013-12-30T15:07:33Z
dc.date.created2013-12-30T15:07:33Z
dc.date.issued2012
dc.identifierInverse Problems 28 (2012) 015005 (22pp)
dc.identifierDOI:10.1088/0266-5611/28/1/015005
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125907
dc.description.abstractThis paper is devoted to a geometrical inverse problem associated with a fluid– structure system. More precisely, we consider the interaction between amoving rigid body and a viscous and incompressible fluid. Assuming a low Reynolds regime, the inertial forces can be neglected and, therefore, the fluid motion is modelled by the Stokes system. We first prove the well posedness of the corresponding system. Then we showan identifiability result: with one measure of the Cauchy forces of the fluid on one given part of the boundary and at some positive time, the shape of a convex body and its initial position are identified.
dc.languageen_US
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectstationary viscous fluid
dc.titleOn the identifiability of a rigid body moving in a stationary viscous fluid
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución