dc.creatorClerc Gavilán, Marcel
dc.creatorCoullet, P.
dc.creatorTirapegui Zurbano, Enrique
dc.date.accessioned2013-12-27T15:11:20Z
dc.date.available2013-12-27T15:11:20Z
dc.date.created2013-12-27T15:11:20Z
dc.date.issued2001
dc.identifierInternational Journal of Bifurcation and Chaos, Vol. 11, No. 3 (2001) 591{603
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125884
dc.description.abstractWe study the resonance at zero frequency in presence of a neutral mode in quasi-reversible systems. The asymptotic normal form is derived and it is shown that in the presence of a reflection symmetry it is equivalent to the set of real Lorenz equations. Near the critical point an analytical condition for the persistence of an homoclinic curve is calculated and chaotic behavior is then predicted and its existence veri ed by direct numerical simulation. A simple mechanical pendulum is shown to be an example of the instability, and preliminary experimental results agree with the theoretical predictions.
dc.languageen_US
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectQUASI-REVERSIBLE SYSTEMS
dc.titleThe stationary instability in quasi-reversible systems and the lorenz pendulum
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución