dc.creatorCalisto, Héctor
dc.creatorMora, Fernando
dc.creatorTirapegui Zurbano, Enrique
dc.date.accessioned2013-12-26T17:08:06Z
dc.date.available2013-12-26T17:08:06Z
dc.date.created2013-12-26T17:08:06Z
dc.date.issued2006
dc.identifierPHYSICAL REVIEW E 74, 022102
dc.identifierDOI: 10.1103/PhysRevE.74.022102
dc.identifierhttps://repositorio.uchile.cl/handle/2250/125851
dc.description.abstractMultistable systems can exhibit stochastic resonance which is characterized by the amplification of small periodic signals by additive noise. Here we consider a nonmultistable linear system with a multiplicative noise forced by an external periodic signal. The noise is the sum of a colored noise of mean value zero and a noise with a definite sign. We show that the system exhibits stochastic resonance through the numerical study of an exact analytical expression for the mean value obtained by functional integral techniques. This is proof of the effect for a very general kind of noise which can even have a definite sign.
dc.languageen_US
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.subjectStochastic resonance
dc.titleStochastic resonance in a linear system: An exact solution
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución